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Abstract. We derive a closed-form expression for the time-dependent propagator of a 
quantum mechanical particle which is subject to an external force which is the sum of ( i )  
a reflecting half-plane barrier with a straight edge, and ( i i )  a harmonic force pointing 
towards a point of the edge. This new addition to the short list of exactly known quantum 
mechanical Green functions is a simple combination of exponential functions and Fresnel 
integrals, the arguments of which are combinations of trigonometric functions. 

1. General considerations 

For only very few quantum mechanical problems is the time-dependent propagator 
known explicitly. The subject of this paper is the addition of one more example to 
this short list. 

Consider a particle of mass m, with Cartesian coordinates x, y ,  z. Let this quantum 
mechanical particle be subject to two forces: 

( i)  a reflecting half-plane barrier at --CO < x < 0, y = 0, --CO < z < +-CO, and 
( i i )  a harmonic force with a potential 

V(X, y ,  z )  = tmw2(x2+y2)++mwiz2. (1.1) 

Note that the force constants for the x and y components of the motion must be equal 
to each other. The propagator G(x, y ,  z, t Ixo, yo,  zo) for this problem can be written 
as the product of a propagator (g)  for the projection of the motion onto the x, y plane 
and the propagator for the projection of the motion onto the z axis. As the reflecting 
half-plane barrier does not influence the z component of the motion, the propagator 
for the z component is the one for the harmonic oscillator. This gives 

G(x,y,z, f I X O , Y O ,  zo) 

(zz+ zi) cos(uot )  -222, 
sin( wet) 

so the non-trivial part of the problem is the calculation of g. 
We shall calculate g following the method of Wiegel and  Boersma (1983) and 

Wiegel (1986), which derives the quantum mechanical propagator from a specific 
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(physically unrelated!) polymer entanglement problem. This paper is organised as 
follows. In 9 2 the relevant polymer entanglement problem and its previously derived 
solution are briefly discussed. This solution is used in 9 3 to find the solution of various 
problems concerning the paths of a Brownian particle in the presence of an absorbing 
medium but in the absence of a screen. In that section we shall also separate the 
Brownian motion paths into ‘even’ and ‘odd’ paths and calculate their weights separ- 
ately. These results make it possible in 9 4 to calculate the propagator of a certain 
diffusion problem; the quantum mechanical propagator g follows by transforming this 
propagator to imaginary time. Some concluding remarks are collected in 9 5 .  

2. A relevant polymer entanglement problem 

Instead of the Cartesian coordinates in the x , y  plane it will turn out to be more 
convenient to introduce polar coordinates r, 6 in that plane. Let 0 < r < cc and -7r < 6 < 
+T. The initial position (xo, yo)  has polar coordinates ( r , ,  6 0 ) ,  the final position (x, y )  
has polar coordinates ( r ,  6).  The half-plane barrier intersects this plane in a ‘branchline’ 
T with polar coordinates 0 < r <a, 6 = *T; the geometry is shown in figure 1. 

Figure 1. Geometry of the two-dimensional entanglement problem. C and C‘ are polymer 
chains ( 8  2)  or Brownian motion paths ( $ 8  3 and 4).  The branchline T is the intersection 
of the half-plane barrier with the ( r ,  0 )  plane. The harmonic force is centred at the origin 
of the ( r ,  0 )  plane. In the limit 0 t n, C and C’ are each other’s mirror image with respect 
to the straight line through T :  if C is even (odd) ,  then C’ is odd (even). 

Now consider the following polymer entanglement problem which is physically 
completely unrelated to the quantum mechanical problem under consideration. A 
polymer chain consists of N freely hinged rods, each of length 1. The chain is 
constrained to this plane and has fixed initial and final positions at ( ro ,  6,) and ( r ,  6).  
The repeating units of the chain are not subject to the reflecting half-plane barrier, 
but they are subject to an external force with a potential V ( r )  which is a function of 
the radial distance r of the form 

V ( r )  = ~ k B T m ’ w 2 r 2  (2.1) 

where kB denotes Boltzmann’s constant and T the absolute temperature. The relation 
between m and m‘ will be clarified shortly. 
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As the polymer chain is not subject to the reflecting half-plane barrier its configur- 
ations can be entangled with the z axis (i.e. the origin of coordinates in the x, y plane) 
a number of times. To precisely specify the entanglement we introduce the branchline 
T (which is now not hard!). For a given polymer configuration C the entanglement 
index n is defined as 

n ( C )  = n + ( C )  - n- (C)  (2.2) 

where n+( C)  = 0, 1,2, . . . denotes the number of times that C crosses T in the direction 
of increasing 6 and n-(  C) = 0, 1,2, . . . denotes the number of passages in the opposite 
direction. 

Now, let Q n ( r ,  0, N )  denote the configuration sum of the polymer, restricted to 
those configurations which start in ( r o ,  eo), end in ( r ,  e)  and have an entanglement 
index n. It was shown by Wiegel (1977) that each of the functions Qn with n = 
0, *l, 1 2 , .  . . is a solhtion of the partial differential equation: 

(2.3) 

where N is treated as a continuous variable and where A denotes the two-dimensional 
Laplace operator with respect to the coordinates of the endpoint. It was also shown 
that the various Qn are related to each other on T by certain unusual boundary 
conditions, and that 

(a/dN - ~ 1 2 A + ~ m ' w 2 r 2 ) Q n ( r ,  8, N )  = O  

lim Q n = 6 ( x - x o ) 8 ( y - y o )  i f n = O  
N -0 

= O  if n # 0. (2.4) 

The explicit calculation of Qn was performed by Inomata and Singh (1978) and 
Tanikella and Inomata (1982) using path integral techniques and by van Andel (1986) 
using the last two equations. They find 

w ( m ' ) ' l 2  [ (;'3'-'] 
Q n ( r ,  e, N )  = - - cosech Nlw - 

Tl 2 

( r i  + r 2 )  coth[ Nlw ( $) ' I 2 ] ]  

x e x p [ i k ( 8 - 8 , + 2 ~ n ) ]  dk (2.5) 

where I ,  denotes the modified Bessel function of order U. 
An independent check of this result is to consider the limit w + 0. One finds 

(2.6) 

which is indeed the correct expression for the simple entanglement problem, cf the 
review by Wiegel (1983). Another independent check of (2.5) will be presented in the 
next section. 
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3. Entanglement properties of Brownian motion paths in an absorbing medium 

We now introduce the auxiliary variable T~ with the dimension of time and take the limits 

N + W  ( 3 . 1 ~ )  

1+0  (3.lb) 

7 0  + 0 ( 3 . 1 ~ )  

m’+ 0 (3 . ld)  

such that the three combinations 

Nro= t 

l2/4rO= D 

(3.2a) 

(3.2b) 

m’/ ro = m ( 3 . 2 ~ )  

remain constant. In this limit the polymer configurations turn into the paths of a 
particle which performs Brownian motion in the x, y plane with a diffusion coefficient 
D. The particle moves in an absorbing medium; the probability of annihilation equals 
imw2r2 per unit of time. Indeed, the configuration sums Qn(r, 8, N )  change into 
probabilities of survival Qn(r, 8, t )  with continuous time t .  By dividing (2.3) by ro it 
is seen that Q n ( r ,  8, t )  is a solution of 

(a /a t -DA+fmwZrZ)Qn(r ,  8, t ) = O  (3.3) 
subject to the appropriate boundary conditions and to the initial condition 

lim Qn = S ( x - x o ) S ( y - y o )  i f n = O  
1-0 

= O  if n # 0. (3.4) 
Taking the limit (3.1) and (3.2) in (2.5) one finds for the probability that a Brownian 
motion path still survives at time t and has an entanglement index n with the origin: 

1 / 2  

Qn(r, 8, t )  =”> co~ech[(2mD)”~wt]  
rr 8 0  

1/2  

xexp[ - w ( g )  ( r i + r Z )  coth[(2mD)”’wr]] 

I/Z 
x . [+= -x I lk , [  w($) ror cosech[(2mD)”’wt]] 

xexp[ ik(8-e0-2m)]dk .  (3.5) 
One can use this result to derive various corollaries. It will turn out to be useful 

to explicitly evaluate the sum of Qn over even values of n, as well as the sum over 
odd values of n. A Brownian motion path which crosses the branchline T an even 
number of times will be called an even path, and the sum over all even paths will be 
denoted by E ( r ,  8, t I ro ,  eo). Similarly, the sum over all odd paths will be denoted by 
O(r, 8, t I ro, 60) .  

In order to calculate the total probability of the even paths we note that 
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Substituting (3.5), and using the summation formula 
+a 

”’= -cc (3.7) 

one finds 

where 
1 / 2  

z = U( $) r,r ~ o s e c h [ ( 2 m D ) ~ / ~ w t ] .  (3.9) 

The sum on the right-hand side of (3.8) can be performed by writing 
U3 

C zif(Z) COS ti( e - e,) 
I= 1 

io X 

= I,.(Z)COS I‘(e-e,)+ zf,+;(z) COS(I’+~)(e--e,). (3.10) 
I ’ = O  f ’ =  1 

The first term is given by equation (9.6.34) of Abramowitz and Stegun (1970): 

ij I,,(Z) cos lye - e,) = + exp[z - e,)] -+z,(Z). (3.11) 

The second term was calculated explicitly in equation (13) of Wiegel and Boersma 
(1983): 

1 ’ =  1 

where erf stands for the error function 

Collecting all these results the total probability of the even paths is found to be given 
by the expression 

E ( r ,  el, t I r, ,  e,) =fz“exp[z cos(e - e,) - z’]{i + e r f [ ( 2 ~ ) ’ / ~  cos +(e - e,)]} (3.14) 

where 
1/2 

z’=  U($) ( r i +  r 2 )  coth[(2mD)”’wt] (3.15) 

1 / 2  
z(’=”(”) co~ech[(2mD)”~wt] .  

IT 8D (3.16) 

The total probability of the odd paths can be calculated in a similar way and is 
found to be given by 

+iT 

= c 0 2 ” ’ + l ( r ,  6, t )  

- 2~ exp[z CO@ - e,) - z’]{ 1 - e r f l ( 2 ~ ) ” ~  COS t (  e - e,)]}. 

“ ‘ = - X  

- 1 I t  (3.17) 
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Before we use (3.14) and (3.17) to calculate various propagators of interest we 
perform a second consistency check by noting that the sum E + 0 should be equal to 
the probability of any Brownian motion path in this absorbing medium to survive at 
least till time t.  According to (3.14) and (3.17) this probability is given by 

~ ~ ~ , ~ , ~ / ~ 0 , ~ 0 ~ + ~ ~ r , ~ , ~ I ~ o , ~ o ~  

= Z” exp[ z cos( 8 - eo) - 2’3 

1/2  

cosech[ (2mD)’”wt] 

1. (3.18) 
I i 2  ( r i +  r z )  ~ o s h [ ( 2 m D ) ” ~ w t ]  - 2ror cos( 0 - e,) 

sinh[ (2mD)”’wt]  

The right-hand side indeed gives the proper expression for the propagator of a Brownian 
particle in a medium which can annihilate the particle with a probability imw2r2 per 
unit of time. 

4. Calculation of the propagator 

Next we ask for the propagator of a Brownian particle which diffuses in the x, y plane, 
in the case in which (i) there is a medium which can annihilate the particle with 
probability imw2r2 per unit of time, and (ii) the branchline T is an absorbing or a 
reflecting barrier for the particle. This propagator, which will be denoted by U, must 
be the solution of 

a u l a t  = DAu -imw2r2u ( t > O )  (4.1) 
with the initial condition 

Y ,  0) = 6(x  -X0)6(Y - Y o )  (4.2) 

u ( x ,  0, t )  = 0 ( X < O ,  t > O )  (4.3) 

and with the Dirichlet boundary condition 

when the branchline is absorbing. For a reflecting branchline (4.3) should be replaced 
by the Neumann boundary condition 

dl4 
- ( x ,  0, t )  = 0 
ay 

( X < O ,  t > O ) .  (4.4) 

Using the analysis of the previous section one can immediately write down the 
explicit solution of this problem in terms of the total contributions of even and odd 
Brownian motion paths. Indeed, by changing to polar coordinates the solution of the 
problem with the Dirichlet boundary condition (4.3) is 

(4.5) 

~ ( r , e , t ) = m @ , t / r ~ ,  ~ o ) + ~ ( r , e , ~ l r o , - w  (4.6) 
Note the appearance of -Bo instead of 0, in the second term on the right-hand side 
of (4.5) and (4.6). The correctness of (4.5) and (4.6) is obvious from the following 
three observations. 

u ( r ,  6, r ) = E ( r ,  8, rlro, &)-o(r, 8, t i r o ,  -eo) 
and the solution of the problem with the Neumann boundary condition (4.4) is 
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(a) The functions E ( r ,  8, t I  r, ,  e,) and O ( r ,  8, t l r , ,  -6,) are sums of functions (3 .5)  
which satisfy (3.3); hence, both E and 0 are solutions ofthe differential equation (4.1). 

(b) In the limit r + O  the function E tends to 6 ( x - x , ) 6 ( y - y 0 )  and 0 tends to 0 
because of (3.4), hence (4.5) and (4.6) satisfy the initial condition (4.2). 

(c) In the limit 0 + *T there exists a one-to-one correspondence between the even 
paths from ( r , ,  e,) to ( r ,  e )  and the odd paths from ( r , ,  -13,) to ( r ,  6 )  because these 
paths can be mapped onto each other by reflection with respect to the x axis. So 

Iim E ( r ,  e, t (  r , ,  e,) = Iim O(r,  e, tI r , ,  -eo) 

lim E ( r ,  e, t l r , ,  e,)= Iim O(r, e , t l r o ,  -eo). 
8-+7 8 + + 7  

(4.7) 
e--,, 8-r -T  

Similarly 

lim O ( r ,  e, t iro,  e,)= lim E ( r ,  e, t ) r o , - e o )  

Iim O ( r , e ,  t l r , ,  e,)= Iim E ( r ,  e, t I r o , - e o ) .  

8-+7 e-+,, 

e - - n  e+-= 
(4.8) 

The last four equations imply that (4.5) obeys the absorbing boundary condition (4.3) 
and that (4.6) obeys the reflecting boundary condition (4.4). 

By substitution of (3.14) and (3 .15)  into (4.5) and (4.6) one finds for the propagator 
the expression 

u ( r ,  e, t )=fz”exp[z COS(e-e , ) -z ’ ]{ i+er f l (2~)’ /~cos ; (e -  e,)]} 
+;z”exp[z cos(e+ e,)-z‘]{i - e r f 1 ( 2 ~ ) ’ / ~  cost(e+e,)]> (4.9) 

where the - sign is for the Dirichlet boundary condition and the + sign for the 
Neumann boundary condition. 

Finally we observe that the transformations 

D+ h 2 / 2 m  ( 4 . 1 0 ~ )  

r + i t / h  (4.10b) 

U + *  ( 4 . 1 0 ~ )  
will transform (4.1) into the Schrodinger equation 

ih-= a$ - -A++?jmo h2  2 2  r I,!I, 
a t  2 m  (4.11) 

The function q5 obeys the correct initial condition and Dirichlet or Neumann boundary 
conditions on the branchline T. Hence 1c, is the propagator g ( r ,  0, t / r o ,  6,) of the 
quantum mechanical problem in (1.2). Explicit substitution gives 

g ( r ,  6, d r o ,  0 0 )  

m u  
- - exp( ( r i  + r2) cot ot 2r ih  sin wt 2h  
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in terms of the Fresnel integral 

(4.13) 

Here the - sign is for the Dirichlet boundary condition which is appropriate for a 
hard wall (the + sign is for the Neumann boundary condition, which seems not to 
occur in quantum mechanics). 

5. Concluding remarks 

The propagator (4.12), with the minus sign, describes the quantum mechanics of the 
simplest possible pinball machine in which a particle is caught in a harmonic field but 
is frustrated in its oscillations by the presence of a single impenetrable screen. Accord- 
ing to classical mechanics the particle suffers collisions with the screen at times which 
are equally spaced with an interval T = 27r/w. The main feature added by quantum 
mechanics is the diffraction of the de Broglie waves around the edge of the screen, as 
represented by the two Fresnel integrals. 

The exact result (4.12) seems to have a certain non-trivial richness of structure due 
to the two-valuedness of the square roots in the Fresnel integrals. We hope it will turn 
out to be of use as a laboratory in which various ideas can be tested, e.g. ideas related 
to the classical limit, asymptotic expansions, spreading of wave packets and various 
forms of perturbation theory. 

The calculated propagator is an example of a quantum mechanical Green function 
which can be evaluated analytically, but for which the sum over classical paths does 
not lead to the exact result. Schulman (1982) has recently considered the Sommerfeld- 
Carslaw diffraction problem (our problem without the harmonic force) and showed 
that the exact propagator is found if one uses the sum over classical paths with one 
intermediate time. At the time of writing it is not clear if (4.12) has the same property. 
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